If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=4.9t^2
We move all terms to the left:
200-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+200=0
a = -4.9; b = 0; c = +200;
Δ = b2-4ac
Δ = 02-4·(-4.9)·200
Δ = 3920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3920}=\sqrt{16*245}=\sqrt{16}*\sqrt{245}=4\sqrt{245}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{245}}{2*-4.9}=\frac{0-4\sqrt{245}}{-9.8} =-\frac{4\sqrt{245}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{245}}{2*-4.9}=\frac{0+4\sqrt{245}}{-9.8} =\frac{4\sqrt{245}}{-9.8} $
| 3y÷2+y÷4=4 | | 10y^2+19y=2 | | 2(2x-1)=4(1-x) | | 20-(2x-5)=2520-(2x-5) | | –20t−8t−-10t=18 | | 2u+3u+3u-3u=20 | | -(11/15)x=3 | | 20p-19p+p-p=10 | | 8s-6s+4s-6s+3s=15 | | -12-5w=-9(6w+7) | | 8s−6s+4s−6s+3s=15 | | 7j-3j-4j+4j=12 | | 3x/4+1/4=2/3-x/3 | | 5(7x-3)=14(2x+2) | | -12-5=-9(6w+7) | | 9m-m-m=7 | | f/5-(-3)=12 | | -6(-5x-3)=138 | | 3x+1/4=2-x/3 | | 12v+5v=14 | | 16c-15c=9 | | 7(x+2)-6=2x+8+x | | -39.2=-4.9b | | 5x-3/4=4x-3/3 | | (3x+2x+7)-(x³-3x-6)=2x³-2x²+3x-13 | | -8+8x=8(3x-7) | | 7(x-4)-4(x-2)=1 | | 6x−5=8x−11 | | 4^x-1-3.2^x-1=0 | | X³-6x²+21x-26=0 | | 13(w+321)=13 | | 2x+7=2(5-x) |